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Abstract

In the literature, one often finds calculations of (e, e′p) reactions at GeV ener-
gies using the factorization approach. Factorization implies that the differen-
tial cross section can be written as the product of an off-shell electron-proton
cross section and a distorted missing momentum distribution. While this fac-
torization appears in the non-relativistic plane wave impulse approximation,
it is broken in a more realistic approach. The main source of factorization
breaking are final state interactions. In this paper, sources of factorization
breaking are identified and their numerical relevance is examined in the reac-
tion 2H(e, e′p) for various kinematic settings in the GeV regime. The results
imply that factorization should not be used for precision calculations, espe-
cially as unfactorized calculations are available.
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I. INTRODUCTION

The study of electron scattering from nuclei has brought us many insights over the past
decades, starting with Hofstaedter’s classic inclusive electron scattering experiments which
determined charge radii, and continuing to the modern day coincidence experiments which
yield detailed information on the nuclear responses which allow us to study the short range
structure of nuclei and the properties of nucleons in the nuclear medium.

In the past years, with the advent of high duty cycle machines with several GeV of
beam energy, coincidence experiments with GeV energy and three-momentum transfers have
become feasible and are carried out mainly at Jefferson Lab, and with some limitations in
beam energy also at MAMI and Bates. These high energy and momentum transfers permit
us to study the transition from hadronic degrees of freedom to quark-gluon - or quark and
flux tube - degrees of freedom in the nucleus. Naturally, the interpretation of the data and
the extraction of the desired information is feasible only with a detailed knowledge of the
whole reaction. The general philosophy is that if we can not describe a data set with the
best “conventional nuclear physics” calculation, which would involve just hadronic degrees
of freedom - one-body currents and meson exchange currents, isobars, initial and final state
correlations - we would see evidence for genuine quark effects in the nucleus. The main
practical problem for the time being is that for the realm of several GeV, where the chance
to see quark effects is expected to be highest, the “conventional nuclear physics” calculations
have not yet been fully developed.

The main problems are a consistent or at least realistic description of the final and
initial hadronic states, proper inclusion of relativistic effects [1], especially the development
of relativistic meson exchange currents [2], and isobar states. While all this has been achieved
and worked out in great detail over the past twenty years for the regime of lower energy and
three-momentum transfers of the order of a few hundred MeV, see e.g. [3–6], a lot of work
still needs to be done in the GeV regime. In this regime, one needs new techniques, as the
nature of the NN interaction changes and takes on a diffractive character, a description in
terms of partial waves becomes unpractical, particle production is possible and indeed the
most frequent process, and relativity plays an important role.

Currently, even in the best available theoretical calculations, approximations are neces-
sary. However, in many cases, even more approximations than necessary are used, and one
of them, the approximation of factorization, is the topic of this paper. Numerical results
for the validity of this approximation in (e, e′p) reactions presented in this paper are for
deuteron targets and have been obtained using the Argonne V18 wave function [7].

This paper is organized as follows: after giving a brief overview over the general formalism
and notation in section I A, I will discuss the factorization approximation in section II, and
illustrate the mechanism of factorization breaking by final state interaction with the simple
example of a strictly non-relativistic one-body current. In section III, I present numerical
examples for factorization breaking with a relativistic current operator, and then summarize
my results in the last section.
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A. Brief overview over the formalism and notation

In order to compare the full calculation with the factorized approach, I start by intro-
ducing some notation and giving a brief summary of the basic formalism of (e, e′p) reactions.
More details can be found in [3,8].

The differential cross section in the lab frame is(
dσ5

dε′dΩedΩN

)h
fi

=
mN mf pN

8π3mi
σMott f

−1
rec[

vLR
L
fi + vTR

T
fi + vTTR

TT
fi + vTLR

TL
fi

+h
(
vT ′R

T ′

fi + vTL′R
TL′

fi

) ]
, (1)

where mi, mN and mf are the masses of the target nucleus, the ejectile nucleon and the
residual system, pN and ΩN are the momentum and solid angle of the ejectile, ε′ is the energy
of the detected electron and Ωe is its solid angle. The helicity of the electron is denoted by
h. The Mott cross section is

σMott =

(
α cos(θe/2)

2ε sin2(θe/2)

)2

(2)

and the recoil factor is given by

frec = |1 +
ωpx −Exq cos θx

mi px
| . (3)

The coefficients vK are the leptonic coefficients, and the RK are the response functions which
are defined by

RL
fi ≡ |ρ(~q)fi|2

RT
fi ≡ |J+(~q)fi|2 + |J−(~q)fi|2

RTT
fi ≡ 2< [J∗+(~q)fi J−(~q)fi]

RTL
fi ≡ −2< [ρ∗(~q)fi (J+(~q)fi − J−(~q)fi)]

RT ′
fi ≡ |J+(~q)fi|2 − |J−(~q)fi|2

RTL′

fi ≡ −2< [ρ∗(~q)fi (J+(~q)fi + J−(~q)fi)] , (4)

where the J± are the spherical components of the electromagnetic current. For my cal-
culations, I have chosen the following kinematic conditions: the z-axis is parallel to ~q, the
missing momentum is defined as ~pm ≡ ~q−~pN , so that in Plane Wave Impulse Approximation
(PWIA), the missing momentum is equal to the negative initial momentum of the struck
nucleon in the nucleus, ~pm = −~p. I denote the angle between ~pm and ~q by θ, and the term
“parallel kinematics” indicates θ = 0o, “perpendicular kinematics” indicates θ = 90o, and
“anti-parallel kinematics” indicates θ = 180o. Note that both this definition of the missing
momentum and the definition with the other sign are used in the literature. In this paper,
I assume that the experimental conditions are such that either the kinetic energy of the
outgoing nucleon and the angles of the missing momentum, θ, and the azimuthal angle φ,
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are fixed, or that the transferred energy ω, the transferred momentum ~q, and the azimuthal
angle φ, are fixed. In the former case, the transferred energy and momentum change for
changing missing momentum, in the latter situation, the kinetic energy and polar angle of
the outgoing proton change for changing missing momentum.

II. WHAT IS FACTORIZATION?

Factorization appears naturally in non-relativistic plane wave impulse approximation
(PWIA) (see e.g. [9]). There, one can describe the differential cross section for the full
process as proportional to the product of the electron-proton cross section times the spectral
function, which describes the probability to find a proton with a certain energy E and
momentum ~p inside the nucleus:

d6σ

dε′dΩedΩNdEN
=
mN mf pN

Ef
σeN S(E, ~p) , (5)

and after integrating over the ejected nucleon’s energy one finds

d5σ

dε′dΩedΩN
=
mN mf pN

mi
σeN f

−1
rec n(~p) , (6)

where n(~p) is the momentum distribution. The eN cross section is given by

σeN = σMott

∑
K

vKR
single nucleon
K (7)

and the single nucleon responses are related to the nuclear responses by

Rnucleus
K = (2π)3Rsingle nucleon

K n(~p) (8)

so that one has in total:

d5σ

dε′dΩedΩN
=
mN mf pN

mi
f−1
rec σMott n(~p)

∑
K

vKR
single nucleon
K . (9)

These simple and intuitive results are valid only under the special conditions of the
non-relativistic PWIA: 1) There is no final state interaction between the ejected nucleon
and the residual nucleus. 2) The negative energy states present in a relativistic treatment
are neglected. 3) The nucleon struck by the virtual photon is the one which is detected in
coincidence with the electron, commonly referred to as impulse approximation.

The main culprit for breaking factorization is the final state interaction, which is always
present in the general case. The other two points are slightly more subtle and do not
necessarily have a large quantitative effect on the observables, depending on the kinematic
region one is interested in. The negative energy states which are present in the relativistic
treatment lead to a breaking of factorization, as was pointed out by [10–12]. An illustrative
example for the case of a deuteron target is shown in [1]. There, it was also shown that
a relativistic, positive-energy current operator reproduces the fully relativistic, manifestly
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covariant result for missing momenta up to 400 MeV/c, and that deviations for higher
missing momenta stem from off-shell effects and not the negative energy states.

The assumption of the impulse approximation is quite good for high energy and momen-
tum transfers, as the additional graph of the Born approximation describes the situation
that the nucleus breaks up and a nucleon that did not interact with the virtual photon is
detected. When high energies and momenta are transferred, it is very unlikely that the
initially struck nucleon transfers all of its momentum to another nucleon in the final state
interaction, or that another nucleon could have such high momentum already in the ground
state. Therefore, in the region of GeV transfers relevant to this paper, a full Born calculation
differs from the impulse approximation calculation at most by a few percent.

As stated above, the final state interactions are the main source of factorization break-
ing in the kinematics considered in this paper. Nevertheless, one finds many calculations
assuming factorization, even in the presence of final state interactions [13–16]:

d5σfactorized

dε′dΩedΩN
=
mN mf pN

mi
σeN f

−1
rec n

distorted(~p, ~pm) , (10)

where the distorted missing momentum distribution is given by

ndistorted(~p, ~pm) =
1

(2π)3

∑̄
f

|Mf |2 (11)

with

Mf = < f |ŜFSI |i >
=
∫
d~R1 . . . d~RA−1 Ψ∗f (~R1 . . . ~RA−2) ŜFSI(~r1, . . . , ~rA) exp(i~pm ~RA−1) Ψi(~R1 . . . ~RA−1) . (12)

Here, the final state interaction operator is represented by ŜFSI . Jacobi coordinates are
denoted by ~R, the laboratory system coordinates are denoted by ~r. The factorization ap-
proximation reduces the numerical effort as only one integral needs to be evaluated, in
contrast to a larger number when every part of the electromagnetic current operator is
evaluated separately, and the cross section is built up from the different response functions
based on the matrix elements < f |ŜFSI Jem|i >, as written out in Eq. 4. Of course, when
assuming factorization, any difference in the behavior of the different response functions is
neglected. There are some cases when this obviously cannot work, e.g. for the fifth response,
RTL′, which is measurable only with a polarized electron beam. In the absence of final state
interaction, this response is identically zero. While it is quite clear from this example that
factorization does not work for polarization observables, the quality of the factorization ap-
proximation for the unpolarized cross section and response functions is not clear a priori,
and is investigated in this paper. It largely depends on which components of the current
operator are involved in calculating a specific observable.

A. A simple example of factorization breaking

In order to illustrate this point, I will consider the strictly non-relativistic reduction
of the electromagnetic one-body current operator. In section III, I also include the full
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relativistic, positive-energy form as discussed in [17], but for the moment, the familiar non-
relativistic form is completley sufficient to illustrate why and where factorization fails. The
non-relativistic current operator consists of a charge part and of a magnetization and con-
vection current:

Jononrel = GE

J⊥nonrel = − i

2mN
GM (~q × ~σ) +

1

mN
GE

(
~p− ~q · ~p

q2
~q

)
. (13)

It is clear from the structure of the current operator that matrix elements which contain
the charge operator, GE, or the magnetization current, − i

2mN
GM (~q × ~σ), differ only in the

spin-structure, but not in their structure in coordinate or momentum space. So as long as
the final state interaction operator is purely central, factorization is valid for the matrix
elements of the charge operator and the magnetization current. However, the convection
current contains a gradient operator in coordinate space, coming from the ~p⊥ in momentum
space, and therefore, the matrix element of the convection current differs from the other
ones - it does not factorize. Now, the validity of factorization depends on the importance of
the convection current contribution to the observable in question. As the key observable is
the cross section, I will discuss the responses that contribute to it. The convection current
obviously does not contribute to RL, and the magnetization current is dominant in RT , so
one might expect a factorization breaking of only a few percent in RT . So far, factorization
would be acceptable, but there are also the interference responses RTL and RTT which
contribute to the cross section. While the interference responses are at least an order of
magnitude smaller for low missing momenta, they become comparable to RL and RT for
higher missing momenta, and are therefore quite important for the cross section. From the
spin structure, it is clear that RTL in the non-relativistic approach is proportional to the
product of the charge operator and convection current matrix elements, and is not going to
factorize due to the presence of the convection current. The same holds for RTT , as this
response contains only the convection current matrix elements. So in the general case, even
for the simple non-relativistic current operator, factorization will not hold for higher missing
momenta. Factorization will be approximately valid in parallel and anti-parallel kinematics,
as the interference responses do not contribute there. In the next section, I will show results
for a relativistic current operator. There, it will be obvious that factorization works even
less well as the relativistic operator contains additional, non-factorizing operator structures
and new coefficients for the old operator structures, which may contain kinematic factors
like ~p 2, which break factorization, too. For now, I will just show the results for the validity
of factorization in the non-relativistic approach for several different kinematic settings. In
Fig. 1, I show the ratio of the cross section calculated in the factorization approximation
to the unfactorized cross section in parallel and perpendicular kinematics for fixed kinetic
energy of 1 GeV for the outgoing proton, and for different values of the energy transfer ω
for fixed three-momentum transfer |~q| = 1.4 GeV/c.

From the left panel in Fig. 1, it is clear that the violation of factorization is smallest
in (anti)parallel kinematics. There, the interference responses vanish and the breaking of
factorization stems solely from the small convection current contribution to the transverse
response. The resulting deviation from 1 of the ratio is of the order of a few percent only. In
perpendicular kinematics, the deviations from 1 are much larger. The two curves shown for
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FIG. 1. The ratio of the cross section calculated in the factorization approximation to the
unfactorized cross section for different kinematic settings. The non-relativistic form of the current
operator was employed. The left panel shows the ratio for fixed kinetic energy of 1 GeV of the
outgoing proton and various fixed angles of the missing momentum, the right panel shows the ratio
for fixed 3-momentum transfer q = 1.4 GeV/c and different values of the fixed energy transfers ω:
0.61 GeV, 0.75 GeV, and 0.94 GeV.

θm = 90o differ by the azimuthal angle φm of the neutron. The ejected nucleon’s azimuthal
angle is φ = φm + π. The response RTL implicitly contains a cos(φ) dependence. So,
the only difference in the two cross sections is that in one case, the transverse-longitudinal
interference response is added, and in the other case, it is subtracted from the sum of the
other responses. The breaking of factorization increases with the missing momentum. This
can be understood as FSI is mainly responsible for the factorization breaking and at the
energies considered here, FSI is mainly diffractive and short-ranged, so that it leads to large
contributions at large missing momenta (see e.g. [16,18]). Also, the interference responses
become comparable to the other responses at larger pm. In perpendicular kinematics, the
deviations from 1 are considerable for pm > 300 MeV/c and range from 5 % to 15 %. A
comparison of perpendicular kinematics and (anti)parallel kinematics clearly shows that the
contribution of the interference responses leads to strong factorization breaking.

In the right panel of Fig. 1, the situation is depicted for fixed energy and three-
momentum transfer. In such a setting, the angle of the missing momentum changes with pm.
Therefore, the interference responses are present in the cross section, and the factorization
breaking is sizable for pm > 350 MeV/c. For larger missing momenta, deviations range
roughly from 9 % to 16 % and seem to grow with increasing transferred energy. This comes
about as RTL increases with the energy transfer.

After identifying the source of factorization breaking due to FSI and discussing the
mechanism for the (too) simple case of a strictly non-relativistic current operator, I proceed
to give a realistic estimate of the validity of the factorization approximation in the next
section.
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III. REALISTIC NUMERICAL EXAMPLES

In this section, I use the relativistic, on-shell form, positive energy (OSPE) current
operator discussed in [17,1]. It has the following form:

Jµ(PΛ;P ′Λ′) ≡ χ†Λ′ J̄
µ(P ;P ′) χΛ (14)

with

J̄o = ρ = fo (ξo + i ξ′o (~q × ~p) · ~σ)

J̄3 =
ω

q
J̄o

J̄⊥ = fo

(
ξ1

[
~p−

(
~q · ~p
q2

)
~q

]
− i {ξ′1 (~q × ~σ)

+ ξ′2 (~q · ~σ) (~q × ~p) + ξ′3 [(~q × ~p) · ~σ]

[
~p−

(
~q · ~p
q2

)
~q

]})
. (15)

Here, fo, ξi, ξ′i are all functions of ω, q, p2; their explicit forms are:

f0 ≡
1

µ1

√
1 + τ

4(1+τ )
µ2

2δ2
, (16)

ξ0 =
κ√
τ

[
GE +

µ1µ2

2(1 + τ )
δ2τGM

]

ξ′0 =
1√

1 + τ

[
µ1GM −

1

2
µ2GE

]
ξ1 =

1√
1 + τ

[
µ1GE +

1

2
µ2τGM

]

ξ′1 =

√
τ

κ

(
1− µ1µ2

2(1 + τ )
δ2

)
GM

ξ′2 =
λ
√
τ

2κ3
µ1µ2GM

ξ′3 =

√
τ

2κ(1 + τ )
µ1µ2 [GE −GM ] . (17)

The dimensionless variables are defined as follows:

κ =
|~q|

2mN

δ =
p⊥
mN

τ = κ2 − λ2

λ =
ω

2mN
(18)

and µ1, µ2 are shorthand for
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µ1 ≡
κ
√

1 + τ√
τ (ε+ λ)

=
1√

1 + δ2

1+τ

(19)

µ2 ≡
2κ
√

1 + τ√
τ (1 + τ + ε+ λ)

=
2µ1

1 +

√
τ (1+τ )

κ
µ1

. (20)

For the reasons explained in [17], I refer to the operator associated with ξo as zeroth-order
charge operator, I call the term containing the ξ′o first-order spin-orbit operator, the term
containing ξ1 first-order convection current, the term containing ξ′1 zeroth-order magneti-
zation current, the term containing ξ′2 first-order convective spin-orbit term, and the term
containing ξ′3 second-order convective spin-orbit term. In this paper, the current is used in
this unexpanded, full form, which is possible as the evaluation of the FSI integrals takes
place in momentum space. Some technical problems pertaining to the coordinate space
treatment can be avoided this way.

The final state interaction is calculated using Glauber theory, see e.g. [18]. For the
purpose of this paper, considering the central, dominating part of the FSI is sufficient, as
the breaking of factorization is strong already in this case. Spin-dependent FSI will break
factorization even for the non-relativistic forms of the charge operator and the magnetization
current. However, it is quite small compared to the central FSI, and makes its major
contribution to the smallest response, RTT , and to the fifth response, which does not enter
the unpolarized quantities I consider here. In other words, the case against factorization is
obvious already from using only central FSI, and any spin-dependent FSI will only increase
the problem. In this paper, I use only the central FSI for simplicity, although calculations
including the spin-orbit FSI are available in the literature [18]. Glauber theory is the main
tool used for calculating FSI at GeV energies. The details of the employed FSI operators
and the parameters used for it are not important for the current purpose, as the breaking of
factorization depends only on the presence of final state interaction. The detailed form of
the current operator is much more important, as can be seen from the comparison of Fig. 1
and Fig. 2.

In Fig. 2, I show the ratio of the factorized to the unfactorized cross section for the
same kinematic conditions as in Fig. 1, but with the full relativistic OSPE current of Eq.
(15). Note that the scales are different in the two figures in order to accomodate the larger
deviations from unity in the relativistic case. Comparing the two figures, it is obvious that
the more complicated structure of the relativistic current operator leads to a much larger
breaking of the factorization assumption in all considered kinematics.

The ratio in parallel and anti-parallel kinematics (left panel) is still rather close to 1,
deviations at higher missing momentum are of the order of 5%. The larger deviations in
anti-parallel kinematics occur close to the kinematic threshold (values larger than a certain
pm,max cannot be reached for a fixed proton momentum, which is implied by a fixed proton
kinetic energy), and are not of great practical relevance. The only responses contributing
in these kinematics are RL and RT , and the deviations from 1 now stem not only from the
convection current, but also from the first and second-order convective spin-orbit contribu-
tions to the transverse part of the current operator and from the spin-orbit operator in the
charge operator. In addition, the factors ξ0 and ξ′1 which multiply the zeroth-order charge

operator and the magnetization current depend on δ2 =
p2
⊥
m2 , and therefore not even the ma-

9



0

0.5

1

1.5

2

0 100 200 300 400 500 600

ra
ti

o

pm (MeV)

θm = 0
θm = 90

θm = 90, φm = 180
θm = 180

0

0.5

1

1.5

2

0 100 200 300 400 500 600

ra
ti

o

pm (MeV)

ω = 0.61 GeV
ω = 0.75 GeV
ω = 0.94 GeV

FIG. 2. The ratio of the cross section calculated in the factorization approximation to the
unfactorized cross section for different kinematic settings. The full relativistic form of the current
operator was employed. The left panel shows the ratio for fixed kinetic energy of 1 GeV of the
outgoing proton and various fixed angles of the missing momentum, the right panel shows the ratio
for fixed 3-momentum transfer q = 1.4 GeV/c and different values of the fixed energy transfers ω:
0.61 GeV, 0.75 GeV, and 0.94 GeV. Note that the scales in this figure are different from the ones
in Fig. 1.

trix elements < f |ŜFSIJem|i > of the zeroth-order charge operator and the magnetization
current are proportional, and factorization does not hold at all in this relativistic setting.
This is reflected by the larger amount of factorization breaking in the relativistic case, Fig. 2,
compared to the non-relativistic case, Fig. 1. Factorization breaking on the order of 5%, as
observed in parallel kinematics, is not a terribly large effect. However, one needs to take
into account that in an actual experiment, exactly parallel kinematics cannot be achieved,
as the detectors would have to be in the beamline, and in practice, e.g. at Hall A of Jefferson
Lab, the smallest angle which can be reached is 12o. Under these conditions, the deviations
are rising to 7 % at missing momenta around 400 MeV/c and to 12 % at missing momenta
around 600 MeV/c. While this is still good enough for count rate estimates, one certainly
does not want to incur this error in a precise theoretical prediction by making an entirely
unnecessary approximation like factorization.

In perpendicular kinematics (dashed curves, left panel), the deviations from 1 are now
large for missing momenta pm > 300 MeV/c, and they are non-negligible for missing mo-
menta from 100 MeV/c to 300 MeV/c. In addition to the factorization breaking in RL and
RT , the interference responses contribute strongly to the factorization breaking. The rea-
son for the huge increase in factorization breaking in going from the non-relativistic to the
relativistic treatment is that in the relativistic treatment, the interference responses pick up
large contributions [17], and are now much more important in the cross section, specifically
for large missing momenta.

When fixing transferred energy and three-momentum (right panel), the factorization
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breaking is present for missing momenta from 200 to 300 MeV/c, and very large for missing
momenta beyond that. In these kinematics, the missing momentum angle varies, so that
at any value of pm, one can expect the interference responses to contribute. Therefore, the
factorization breaking is large, even though not quite as large as in perpendicular kinematics,
where the contribution of the interference responses is maximized. Again, one sees a large
increase in factorization breaking going from the non-relativistic case to the relativistic case,
due to the interference responses.

IV. SUMMARY AND CONCLUSIONS

I have pointed out the sources of factorization breaking in (e, e′p) reactions at GeV
energies, and given numerical examples for the reaction 2H(e, e′p). Both in the (oversim-
plifying) non-relativistic treatment and in the relativistic case, the factorization breaking is
significant. The strength of the factorization breaking depends considerably on the chosen
kinematics. Only at very low missing momenta, pm < 100 MeV/c, factorization works. In
strictly parallel kinematics, the deviations are about 5% or smaller. However, one needs
to keep in mind that in any experiment, θm > 0, and the deviations will be correspond-
ingly larger, around 10 %. In perpendicular kinematics or for fixed transferred energy and
three-momentum, the factorization assumption clearly fails for pm > 300 MeV/c.

While it is well known that factorization is insufficient when (e, e′p) reactions at lower
energies are calculated, this fact does not seem to be widely appreciated when it comes to
GeV energy and momentum scales. This paper serves to draw attention to the fact that this
approximation is lacking and that correct treatments of at least this problem are available,
see e.g. [19,18]. It is especially important to be accurate as far as factorization is concerned,
as there are other aspects of the problem, e.g. relativistic two-body currents, which are
not yet worked out to a satisfactory degree, and which are going to cause uncertainties
in the theoretical calculations. Note that many color transparency calculations, see e.g.
[14,13], assume factorization. The color transparency effects predicted for experiments at
Jefferson Lab are relatively small, and the additional uncertainty introduced by assuming
factorization may very well be of the same order of magnitude as the predicted effects and
rather misleading in the interpretation of the data.

In this paper, I have considered the effects of factorization on the unpolarized cross
section only. It is clear that e.g. polarization observables or single responses are more
sensitive to this type of approximation. One hardly needs to point out that wherever a dip
is predicted for an observable in a factorized calculation, it will most likely be filled in when
the correct, unfactorized calculation is performed. Furthermore, interesting new information
will be obtained from separating the responses RL + RTT , RT , and RTL, which cannot be
interpreted in a factorized approach.
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